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Based on the well-known three-wave method of measuring small gaseous components of the atmosphere and
the Angstro

..
m formula, a differential method of determining the optical density of the aerosol constituent of

the atmosphere in the ultraviolet band is suggested.

Introduction. The aerosol represents the most important constituent of the atmosphere and determines the en-
ergy balance of the entire Earth. Its principal parameters are the optical density as well as some others associated with
it, to which the Angstro

..
m index can be related [1]. The optical density of aerosol can be determined by both "direct"

and "inverse" methods. The principal "direct" method is that of Lengly [2]. The crux of the method is taking the loga-
rithm of the fundamental equation of the optical radiation extinction in the atmosphere (the Bouguer–Beer law) and
imparting a linear form to the graph of this equation at the slope in the UV band equal to the linear sum of individual
optical densities:

τΣ = τaerλ + τoz + τR . (1)

The values of τoz and τR found or known for the wavelengths given are used for calculations. Thus, the complexity
of direct measurements of the optical density of an aerosol in the UV band leads to the necessity of carrying out in-
direct determination and corresponding calculations outside this band.

As noted above, the principal optical parameters of aerosol can also be found by an "inverse" method based
on the mathematical apparatus of integral equations, in particular, of the Fredholm equations of the first and second
kind. Here, researchers face the chief challenge of incorrectly posed problems of mathematical physics where arbitrary
small errors in the values measured may lead to arbitrary great errors in the functions sought.

However, the aim of the present work is to determine not the function τ(λ), but rather a separate discrete
value τ at selected wavelengths with the aid of "direct" measurements, using the Bouguer–Beer equation. In this con-
nection, the problems of stability and "regularization," inherent in "inverse" problems, are not considered in the present
article.

We note that the problem of taking into account the influence of the aerosol is also present in ozonometry,
but not of measuring the optical density of aerosol but rather of eliminating its effect. The widely known Dobson
ozonometric method presupposes, in some particular cases, the elimination of the aerosol error by performing meas-
urements at two pairs of wavelengths [2]. However, the method does not permit one to carry out aerosol measure-
ments eliminating the effect of the atmospheric ozone and therefore cannot be recognized as a universal and exact
one to be used for investigating the optical parameters of individual components of the atmosphere in the UV band.
Such universality, in our opinion, is characteristic of the method of three-wave measurements examined in most de-
tail in [3]; below, we present a variant of the application of this method to determining the principal optical parame-
ters of the aerosol.
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First of all, we set forth the crux of the proposed differential method of finding the optical density of aerosol.
As is known [1], τaerλ is defined by the Angstro

..
m empirical formula

τaerλ = C1λ
−α

 . (2)

Taking the derivative of (2) with respect to λ, we obtain

dτaerλ

dλ
 = − αC1λ

−(α+1)
 , (3)

which lies at the basis of the proposed differential method.
As concerns the applicability of Eq. (2), the following arguments are appropriate. Having taken logarithms of

both sides of Eq. (2), we have

α = − 
d ln τaerλ

d ln λ
 , (4)

i.e., α is defined as the derivative τaerλ of the wavelength in a logarithmic scale. In [4, 5] it is shown that α > 2.0 for
fresh aerosol particles of smoke, whereas for large disperse desert dust aerosol particles the value of α approaches
zero.

In [6] the value of α calculated within the range 380–862 nm was analyzed, and the relationship between it
and the effective radius r of the quantitative distribution of the sizes of aerosol particles was revealed. The Angstro

..
m

index α is related to the parameter ν of the Junge distribution law [7] as

α = ν − 2 , (5)

where 
dN

d ln r
 = Cr−ν is a mathematical expression of the Junge distribution law. However, in an actual case, the aerosol

obeys the size distribution law different from expression (5) and as a result of such deviation from the Junge law an

expression in the form of the second-order polynomial to describe the interrelationship between τaerλ and α is suggested:

ln τaerλ = α0 + α1 ln λ + α2 (ln λ)2 . (6)

Equation (6) has found experimental confirmation. Figure 1 presents an experimental nonlinear curve corre-
sponding to Eq. (6) and a theoretical linear approximation for the range 340–1020 nm [7]. In this case, the quantity
α calculated over the spectral lengths had the following values: α(340–380 nm) = 0.46; α(380–440 nm) = 1.03;
α(440–500 nm) = 1.28; α(500–675 nm) = 1.76; and α(675–870 nm) = 2.31.

Fig. 1. Curves of the dependence ln τaerλ = f(ln λ): 1) linear approximation; 2)
nonlinear dependence [7].
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The foregoing refinement of the relationship between such parameters as α, τaerλ, and λ are very important
for investigation of τaerλ in a wide range of wavelengths, for example, at λ = 340–1000 nm.

The aim of the present work is to determine τaerλ in the UV band, which justifies the further use of expres-
sions (2) and (3) for solving the problem set.

Expression (3) represents a transcendental equation for α whose solution can be performed graphically. Here,
it should be kept in mind that the right-hand side of Eq. (3) for the UV band is a monotonic function of α. The es-
sence of such a solution consists of the construction of a family of curves of the function

∆τaerλ

∆λ
 = f (α, λ, C1) (7)

at the given discrete values of λ for the specified continuous interval α = αmax − αmin. The intersection of the curves
of the indicated family with the horizontal line y = ∆τaerλ ⁄ ∆λ yields the unknown values of α1, α2, ..., αn.

Conventionally the process of the solution of Eq. (7) is shown in Fig. 2. It is evident that its solution presup-
poses the presence of the estimate of the differential parameters ∆τaerλ ⁄ ∆λ. To calculate the latter, the above-men-
tioned three-wave method is used, according to which measurements are made at three wavelengths λ1, λ2, and λ3,
where λ1 < λ2 < λ3, as a result of which we obtain I1(λ1), I2(λ2), and I3(λ3) corresponding to the solar radiation inten-
sities at the level of the ground at these wavelengths [3]. Thereafter, a relative value of z is calculated:

z = 

k
√I1 (λ1) I3 (λ3)

I2 (λ2)
 ,

(8)

where k = 2 % ∆′.
We will avail ourselves of Bouguer’s formula, which in application to the output signals of the optical chan-

nels of meter I has the following form [1]:

I = ∆λωS0⋅10
−[γozµX+τRm+τaerλm1]

 , (9)

where ∆λ is the spectral width of the optical channel of the meter. With account for Eqs. (8) and (9), with the pa-
rameters of the optical channels being identical, we have

z = 

k
√S01S03

S02
⋅10

 
− 



µX





γ0λ1
+ γ0λ3

k
 − γ0λ2




 + m





τRλ1
 + τRλ3

k
 − τRλ2




 + m1 





τaerλ1
 + τaerλ3

k
 − τaerλ2








 . (10)

It is well known that among all above-considered components which influence the overall extinction of an op-
tical ray in the atmosphere, the aerosol has the greatest variability. To clearly isolate the aerosol part in Eq. (10) maxi-
mally, the value of the parameter k should be selected in such a way that the following equality should be satisfied:

Fig. 2. Graphical illustration of the solution of Eq. (7).
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µX 




γ0λ1
 + γ0λ3

k
 − γ0λ2




 + m 





τRλ1
 + τRλ3

k
 − τRλ2




 = 0 . (11)

To control the attainment of condition (11) one has to calculate the autocorrelation function of the parameter z. It is
evident that with condition (11) being met, the ratio of the high-frequency part of the autocorrelation function of the
parameter z to its low frequency part must have a maximum value.

In this case, expression (10) takes the form

z = 

k
√S01S03

S02
⋅10

−m1 




τaerλ1
 + τaerλ3

k
 − τaerλ2




 . (12)

Next, assuming the function τaer(λ) to be linear in a narrow range λ1–λ3, we have

z = 

k
√S01S03

S02
⋅10

−m1 (τaerλ1λ3

∗
 + τaerλ2

) , (13)

τaerλ1λ3

∗
 = 

τaerλ1
 + τaerλ3

k
 .

(14)

Equation (13) yields

τaerλ1λ3

∗
 − τaerλ1λ2

 = ln 

m1+k

  √S01S03
m1
  √zS02

 .
(15)

From Eq. (15) it follows that

∆τaerλ

∆λ
 = 

1

∆λ
 ln 

m1+k

  √S01S03
m1
  √zS02

 .
(16)

Thus, the considered three-wave method of measuring allows one to estimate the value of ∆τaerλ ⁄ ∆λ, which
is required to calculate the parameters α with the aid of expression (4).

Conclusions. The proposed differential method of calculating the optical parameters of the atmospheric aerosol
can be formulated as follows:

1) three-wave measurements are made in the regime in which the high-frequency component of the autocorre-
lation function of the parameter z takes a maximum value;

2) based on the results of measurement according to Item 1 the quantity ∆τaerλ ⁄ ∆λ is calculated;
3) a graphical solution of Eq. (7) is made (see Fig. 2).
We also note that the proposed differential method, unlike the Langley method, is based on the results of

measurements in the UV band, which is responsible for the validity of the results obtained by this method.

NOTATION

C1 = τaerλ(λ = 1 µm) = const; C, the Junge parameter; I, the output signal of the optical channels of the
meter, mA; m, optical mass of the Rayleigh atmosphere; m1, optical mass of the atmospheric aerosol; N, total number
of aerosol particles in a vertical column at atmosphere of section 1 cm2 the radius of which is smaller than r; r, radius
of aerosol particles, µm; S0, solar radiation flux on the outer boundary of the atmosphere, W⋅cm−2⋅µm−1; X, overall
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content of ozone in the atmosphere, matm⋅cm; α, Angstro
..

m factor; α0, zero component of the Angstro
..
m factor in se-

ries expansion; γoz, coefficient of attenuation of ozone, matm⋅cm−1; ∆′, regulated value; λ, wavelength, µm; µ, optical
mass of ozone; ν, Junge index; τ, optical density; ω, spectral sensitivity of the meter, mA⋅W–1⋅cm2. Subscripts: aer,
aerosol; oz, ozone; R, Rayleigh.
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